
Mixminion and Tor:
Two deployed

anonymity networks
Nick Mathewson

E-Privacy / Firenze / 2005

About this talk

• Background

• Mixminion

• Tor

• The Future

Topic

Two deployed networks for anonymous
communication.

• Tor: low latency, less anonymous.

• Mixminion: more latency, so less useful,
but more anonymous.

Acknowledgements

• Mixminion project

• Two other designers

• Tor project

• Many other designers

• One other programmer

I. Background

What is Anonymity?
• Technical definition:

• “The state of being unidentifiable within a
set (the ‘anonymity set’).”

• Informal meaning: Alice uses system S to
interact with Bob.

• Forward anonymity:
Nobody can tell who Alice is.

• Reverse anonymity:
Nobody can tell who Bob is.

What is anonymity not?

• Cryptography (hides what, not who)

• Steganography

• Ordinary non-collection / non-retention

• “I didn’t write my name on it.”

Who needs anonymity? (I)

Citizens

• Avoid profiling by advertisers
(DoubleClick, etc)

• Avoid identification by communications
partners

• Avoid retribution for unpopular opinions

Who needs anonymity? (II)
• Businesses (anonymity=“security”)

• Investigate competition

• Hide strategic relationships

• Governments
(anonymity=“traffic-analysis resistance”)

• Investigation / Intelligence gathering

• Prevent traffic analysis

Who needs anonymity? (III)

• And, yes, bad people too...

• ...but they already have good means of
anonymous communication.

How does it work?
Relay communications through network of
decrypting servers.

(There are other designs too.)

Alice Bob

S2

S3

S1

E1(E2(E3(M)))

E2(E3(M))

E3(M) M

Anonymity needs users

• You can’t be anonymous alone.

• (contrast to cryptographic systems)

• Need diverse users to hide own interests.

• (private networks are useless)

Threat model and usability

• Key choice: Low or high latency?

• Many applications need low-latency

• But to defeat a global eavesdropper, you
need high latency.

• Why? End-to-end correlation...

Correlation attacks

• Attacker can see whole network

• Observe when messages are sent/received

• Correlate timing: Observe that when A
sends, B receives.

• Deduce that A is talking to B.

• (Known low-latency defenses are too expensive.)

II. Mixminion

Project overview
• High-latency system

• Tries to defend against all known attacks
(Assume global adversary who can send msgs and
controls some servers.)

• Builds on earlier “Anonymous Remailers”
Cypherpunk a.k.a. Type I: old and insecure
Mixmaster a.k.a. Type II: more secure, no replies
Mixminion a.k.a. Type III: more secure, replies

Routing

Alice Bob

S2

S3

S1

E1(S2,E2(S3,E3(Bob,M)))

E2(S3,E3(Bob,M))

E3(Bob,M)
M

Reply blocks & routing

Bob Alice

S2

S1

M, E1(K1,S2,E2(K2,Alice)

Ek1(M),E2(S3,Alice) Ek2(Ek1(M))

Alice’s reply block

(Stop here, and you have Type I)

Remaining attacks
• Relay attack: Capture Alice’s message, send

another copy.

• Reply block flooding

• Size correlation: 2MB in == ~2MB out

• Partition on PGP version or other options

• Partition replies from forward messages

• Blending attacks: flooding, n-1, etc.

Mixmaster’s Defenses
• Replay: remember message digests for a

few days; then use expiration date in msg.

• Reply flooding: no reply blocks

• Size correlation: all messages same size

• Partitioning: no algorithm choice

• Blending... timed dynamic pool mixing

Timed dynamic pool

• Every N minutes, decide whether to relay
messages...

• ...but don’t relay if too few messages in
pool (prevents trickle attacks)

• ...and don’t relay more than a fraction of
the messages (slows flushing attacks)

Attacks on Mixmaster

• Knowledge partioning attacks

• Post-message key exposure

• Users still use Cypherpunk anyway

Mixminion
Contributions (I)

• Integrated server directories:

• Enables key rotation

• Enables easier replay prevention

• No SMTP for transport

• K/N message fragmentation

Mixminion
Contributions (II)

• Forward security

• Single Use Reply Blocks (SURBs)

• Client integration

Integrated directories

• All clients have same network view;
no knowledge partitioning

• Servers can update info automatically...

• ...including keys!

• So replay caches only need to last as long
as keys.

Built-in SSL transport

• Problems with SMTP:

• not always encrypted
(even when encrypted, not always
authenticated or forward-secure)

• often unreliable or filtered or clipped

K-of-N fragmentation

• When messages are bigger than packet size

• Tolerates packet loss

• Hides number of packets in large messages

(note patent issues)

Forward security

• Definition: prevent future attacks from
exposing current data.

• How:

• Key rotation

• DH in SSL protocol

Single-use reply blocks

• Can only be used once: prevents flooding

• (Uses same trick as replay cache)

• Indistinguishable from forward messages.

•
• (Need tricky cryptography to beat tagging;

see paper for more information.)

Current status

• Free, open-source software

• Written in Python; cross-platform; 40kloc

• Public specification, published design

• Current version is 0.0.7.1

• 34 servers worldwide

III. Tor

Tor: The onion router
• Onion routing invented ~1996 by Syverson,

Goldschlag, Reed at NRL. Test system
temporarily deployed.

• 2001: Roger Dingledine joins as external
programmer/designer. New implementation.

• 2002: I join.

• 2003: Released as open source

• 2004: NRL funding stalls; EFF begins funding

Onion Routing Goals
• Support existing protocols:

Must be low-latency

• Resist attacker who can’t see both ends
(Stronger adversary wins because of correlation
attacks.)

• Support many users efficiently

Onion Routing v1

Alice Bob

S2
S1

S3

0. Network of encrypted links

S S

Carol

Onion Routing v1

Alice Bob

S2
S1

E1(k1,S2,E2(k2,S3,E3(k3)))

E2(k2,S3,E3(k3))

E3(k3)

S3

1. Construct a circuit

S S

Carol

Onion Routing v1

Alice Bob

S2
S1

Ek1(Ek2(Ek3(“Bob”)))

Ek2(Ek3(“Bob”))

Ek3(“Bob”)

S3

2. Open a stream

S S

Carol

TCP connect

Onion Routing v1

Alice Bob

S2
S1

Ek1(Ek2(Ek3(“HTTP”)))

Ek2(Ek3(“HTTP”))

Ek3(“HTTP”)

S3

3. Communicate data in cells

S S

Carol

HTTP GET

Problems with OR v1

• Too many proxies

• Too much public-key

• No exit restrictions

• Not forward-secure

• Patented in USA :p

Tor goals

• No protocol scrubbing

• No modifications to existing apps

• More efficient

• End-to-end integrity checking

• Deployable

Tor improvements
• Establish circuits step-by-step:

forward secure, not patented.

• Exit policies

• Directory service

• Many streams per circuit: less CPU for PK

• SOCKS

Building circuits

• Extend circuit step-by-step

• Diffie-Hellman handshake with each step

• After circuit closed, attacker can’t get keys

Directory servers

• As in Mixminion: servers publish keys and
other signed info; clients download.

• Servers cache for efficiency

• (Currently revising.)

Exit policies

• Nobody is willing to run an open proxy
(Especially for port 25!)

• Servers declare which IPs, ports to support

• Clients choose servers that support targets

SOCKS proxy

• Old OR required new proxy for each
protocol

• Tor uses SOCKS; most apps support

• DNS issues

Feature:
Location-hidden services

• Bob runs service; Alice can’t learn IP address.

• Bob builds circuit to ‘intro points’; advertises as
“Robert”.

• Alice asks for “Robert”.

• Alice’s Tor builds circuits to ‘rendezvous point’ and
intro point; tells IP about RP.

• IP tells Bob; Bob builds circuit to RP; connects
circuits.

Feature:
Controller protocol

• (We don’t do GUIs; others do.)

• Tor listens for connections from local
controller program; controller can observe
and adjust Tor.

• Also for scripting: google.a.b.c.path

• (Want to write a controller?)

Feature:
Improved circuit logic

• For HTTP/FTP: pick high-bandwitdth
servers

• For SSH/IRC: pick long-lived servers

• Build likely circuits ahead of time.

Current Status

• Free, open-source software

• Written in C; cross-platform; 40 kloc

• Public specification, published design

• >100 verified servers; >10,000 users

• Latest is 0.1.0.8-rc

IV. The Future

• Development plans

• Technical challenges

• Social/policy challenges

Next in Mixminion

• Client API

• Integrated server status probes

• Pseudonym service

• Decentralized voting directories

Voting directories

• Single directory is single point of failure

• So have multiple directory servers vote on
contents

• (What if: directories lie? directories fail?
directories disagree on who is a directory?)

Next in Tor

• More efficient (reduce need for PK by 25%)

• Better directory system (allow 10k servers)

• Better DNS proxying

• GUI contest

Technical challenges

• For Mixminion:

• Long-term intersection attacks (hard)

• Better nym service design

• Stylometry (very hard)

• Collusion-aware introduction

Technical challenges
• For Tor:

• Incentives to relay

• Fingerprinting attacks

• Can mid-latency slow correlation?

• How to scale to 10k servers?

• Location diversity (when building circs)

• Anti-censorship (?)

Social challenges:
Blacklisting

• Many services use IPs to punish bad users

• So all of Tor gets blocked.

• Current approach: improved security on
service, blacklisting on Tor.

• Controversial: be easy to blacklist?

Increasing adoption

• How to get people to use Tor?

• So far, promotion seems to work.

• Target diverse groups.

Public perception

• (Ordinary users avoid disreputable nets)

• Targeting good users helps

• Discouraging illegal use helps

• Having good sponsors helps

• More education needed!

Bandwidth,
sustainability

• [Tor is first widely deployed volunteer low-
latency network.]

• Social problem is getting more servers

• Idea: give server operators better service?

• (This has anonymity problems)

Legal challenges
• Warning: I am not a lawyer. Especially not here.

• Are server operators liable for traffic? (unlikely)

• Must server operators aid wiretaps? (barely)

• Must designers aid wiretaps? (no)
(Under US law, no way.)

• Should network be backdoored? (IMO, no!)

• Circuits cross jurisdictions, so local policies are
limited.

Policy challenges
• Free expression needs anonymous speech?

What about ability to exercise this right?

• Must educate law enforcement

• Must educate policy-makers:
Privacy is security.
Allow data holders to protect their own data.
Never let one party to a compromise choose the
compromise.

Q&A
• Tor http://tor.eff.org/

• Mixminion http://mixminion.net/

• Anonymity Bibliography
http://freehaven.net/anonbib/

• Email
Nick Mathewson <nickm@freehaven.net>
PGP: B35B F85B F194 89D0 4E28 C33C 2119 4EBB 1657 33EA

