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About this talk

• Background

• Mixminion

• Tor

• The Future



Topic

Two deployed networks for anonymous 
communication.

• Tor: low latency, less anonymous.

• Mixminion: more latency, so less useful, 
but more anonymous.
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I. Background



What is Anonymity?
• Technical definition:

• “The state of being unidentifiable within a 
set (the ‘anonymity set’).”

• Informal meaning:  Alice uses system S to 
interact with Bob.

• Forward anonymity: 
Nobody can tell who Alice is. 

• Reverse anonymity: 
Nobody can tell who Bob is. 



What is anonymity not?

• Cryptography (hides what, not who)

• Steganography

• Ordinary non-collection / non-retention

• “I didn’t write my name on it.”



Who needs anonymity? (I)

Citizens

• Avoid profiling by advertisers 
(DoubleClick, etc)

• Avoid identification by communications 
partners

• Avoid retribution for unpopular opinions



Who needs anonymity? (II)
• Businesses (anonymity=“security”)

• Investigate competition

• Hide strategic relationships

• Governments 
(anonymity=“traffic-analysis resistance”)

• Investigation / Intelligence gathering

• Prevent traffic analysis



Who needs anonymity? (III)

• And, yes, bad people too...

• ...but they already have good means of 
anonymous communication.



How does it work?
Relay communications through network of 
decrypting servers.

(There are other designs too.)
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Anonymity needs users

• You can’t be anonymous alone.

• (contrast to cryptographic systems)

• Need diverse users to hide own interests.

• (private networks are useless)



Threat model and usability

• Key choice: Low or high latency?

• Many applications need low-latency

• But to defeat a global eavesdropper, you 
need high latency.

• Why?  End-to-end correlation...



Correlation attacks

• Attacker can see whole network

• Observe when messages are sent/received

• Correlate timing: Observe that when A 
sends, B receives.

• Deduce that A is talking to B.

• (Known low-latency defenses are too expensive.)



II. Mixminion



Project overview
• High-latency system

• Tries to defend against all known attacks
(Assume global adversary who can send msgs and 
controls some servers.)

• Builds on earlier “Anonymous Remailers”
Cypherpunk a.k.a. Type I: old and insecure
Mixmaster a.k.a. Type II: more secure, no replies
Mixminion a.k.a. Type III: more secure, replies



Routing
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Reply blocks & routing

Bob Alice

S2

S1

M, E1(K1,S2,E2(K2,Alice)

Ek1(M),E2(S3,Alice) Ek2(Ek1(M))

Alice’s reply block

(Stop here, and you have Type I)



Remaining attacks
• Relay attack: Capture Alice’s message, send 

another copy.

• Reply block flooding

• Size correlation: 2MB in == ~2MB out

• Partition on PGP version or other options

• Partition replies from forward messages

• Blending attacks: flooding, n-1, etc.



Mixmaster’s Defenses
• Replay: remember message digests for a 

few days; then use expiration date in msg.

• Reply flooding: no reply blocks

• Size correlation: all messages same size

• Partitioning: no algorithm choice

• Blending... timed dynamic pool mixing



Timed dynamic pool

• Every N minutes, decide whether to relay 
messages...

• ...but don’t relay if too few messages in 
pool   (prevents trickle attacks)

• ...and don’t relay more than a fraction of 
the messages   (slows flushing attacks) 



Attacks on Mixmaster

• Knowledge partioning attacks

• Post-message key exposure

• Users still use Cypherpunk anyway



Mixminion 
Contributions (I)

• Integrated server directories:

• Enables key rotation

• Enables easier replay prevention

• No SMTP for transport

• K/N message fragmentation



Mixminion 
Contributions (II)

• Forward security

• Single Use Reply Blocks (SURBs)

• Client integration



Integrated directories

• All clients have same network view; 
no knowledge partitioning

• Servers can update info automatically...

• ...including keys!

• So replay caches only need to last as long 
as keys.



Built-in SSL transport

• Problems with SMTP:

• not always encrypted
(even when encrypted, not always 
authenticated or forward-secure)

• often unreliable or filtered or clipped



K-of-N fragmentation

• When messages are bigger than packet size

• Tolerates packet loss

• Hides number of packets in large messages

(note patent issues)



Forward security

• Definition: prevent future attacks from 
exposing current data.

• How:

• Key rotation

• DH in SSL protocol



Single-use reply blocks

• Can only be used once: prevents flooding

• (Uses same trick as replay cache)

• Indistinguishable from forward messages.

•
• (Need tricky cryptography to beat tagging;

see paper for more information.)



Current status

• Free, open-source software

• Written in Python; cross-platform; 40kloc

• Public specification, published design

• Current version is 0.0.7.1

• 34 servers worldwide



III. Tor



Tor: The onion router
• Onion routing invented ~1996 by Syverson,

Goldschlag, Reed at NRL.  Test system 
temporarily deployed.

• 2001: Roger Dingledine joins as external 
programmer/designer.  New implementation.

• 2002: I join.

• 2003: Released as open source

• 2004: NRL funding stalls; EFF begins funding



Onion Routing Goals
• Support existing protocols:

Must be low-latency

• Resist attacker who can’t see both ends
(Stronger adversary wins because of correlation 
attacks.)

• Support many users efficiently



Onion Routing v1
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Onion Routing v1
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Onion Routing v1
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Onion Routing v1
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Problems with OR v1

• Too many proxies

• Too much public-key

• No exit restrictions

• Not forward-secure

• Patented in USA   :p



Tor goals

• No protocol scrubbing

• No modifications to existing apps

• More efficient

• End-to-end integrity checking

• Deployable



Tor improvements
• Establish circuits step-by-step:

forward secure, not patented.

• Exit policies

• Directory service

• Many streams per circuit: less CPU for PK

• SOCKS



Building circuits

• Extend circuit step-by-step

• Diffie-Hellman handshake with each step

• After circuit closed, attacker can’t get keys



Directory servers

• As in Mixminion: servers publish keys and 
other signed info; clients download.

• Servers cache for efficiency

• (Currently revising.)



Exit policies

• Nobody is willing to run an open proxy
(Especially for port 25!)

• Servers declare which IPs, ports to support

• Clients choose servers that support targets



SOCKS proxy

• Old OR required new proxy for each 
protocol

• Tor uses SOCKS; most apps support

• DNS issues



Feature: 
Location-hidden services

• Bob runs service; Alice can’t learn IP address.

• Bob builds circuit to ‘intro points’; advertises as 
“Robert”.

• Alice asks for “Robert”.

• Alice’s Tor builds circuits to ‘rendezvous point’ and 
intro point; tells IP about RP. 

• IP tells Bob; Bob builds circuit to RP; connects 
circuits.



Feature: 
Controller protocol

• (We don’t do GUIs; others do.)

• Tor listens for connections from local 
controller program; controller can observe 
and adjust Tor.

• Also for scripting: google.a.b.c.path

• (Want to write a controller?)



Feature: 
Improved circuit logic

• For HTTP/FTP: pick high-bandwitdth 
servers

• For SSH/IRC: pick long-lived servers

• Build likely circuits ahead of time.



Current Status

• Free, open-source software

• Written in C; cross-platform; 40 kloc

• Public specification, published design

• >100 verified servers; >10,000 users

• Latest is 0.1.0.8-rc



IV. The Future 

• Development plans

• Technical challenges

• Social/policy challenges



Next in Mixminion

• Client API

• Integrated server status probes

• Pseudonym service

• Decentralized voting directories



Voting directories

• Single directory is single point of failure

• So have multiple directory servers vote on 
contents

• (What if: directories lie? directories fail?
directories disagree on who is a directory?)



Next in Tor

• More efficient (reduce need for PK by 25%)

• Better directory system (allow 10k servers)

• Better DNS proxying

• GUI contest



Technical challenges

• For Mixminion:

• Long-term intersection attacks (hard)

• Better nym service design

• Stylometry (very hard)

• Collusion-aware introduction



Technical challenges
• For Tor:

• Incentives to relay

• Fingerprinting attacks

• Can mid-latency slow correlation?

• How to scale to 10k servers?

• Location diversity (when building circs)

• Anti-censorship (?)



Social challenges:
Blacklisting

• Many services use IPs to punish bad users

• So all of Tor gets blocked.

• Current approach: improved security on 
service, blacklisting on Tor.

• Controversial: be easy to blacklist?



Increasing adoption

• How to get people to use Tor?

• So far, promotion seems to work.

• Target diverse groups.



Public perception

• (Ordinary users avoid disreputable nets)

• Targeting good users helps

• Discouraging illegal use helps

• Having good sponsors helps 

• More education needed!



Bandwidth, 
sustainability

• [Tor is first widely deployed volunteer low-
latency network.]

• Social problem is getting more servers

• Idea: give server operators better service?

• (This has anonymity problems)



Legal challenges
• Warning: I am not a lawyer.  Especially not here.

• Are server operators liable for traffic? (unlikely)

• Must server operators aid wiretaps? (barely)

• Must designers aid wiretaps? (no)
(Under US law, no way.)

• Should network be backdoored? (IMO, no!)

• Circuits cross jurisdictions, so local policies are 
limited.



Policy challenges
• Free expression needs anonymous speech?

What about ability to exercise this right?

• Must educate law enforcement

• Must educate policy-makers:
Privacy is security.
Allow data holders to protect their own data.
Never let one party to a compromise choose the 
compromise.



Q&A
• Tor  http://tor.eff.org/

• Mixminion http://mixminion.net/

• Anonymity Bibliography
http://freehaven.net/anonbib/

• Email
Nick Mathewson <nickm@freehaven.net>
PGP: B35B F85B F194 89D0 4E28   C33C 2119 4EBB 1657 33EA


